The Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model for Forecasting Financial Volatility

نویسندگان

  • Adolfo M. de Guzman
  • Adolfo M. De Guzman
  • Dennis S. Mapa
  • Joselito C. Magadia
چکیده

A new variant of the ARCH class of models for forecasting conditional variance, to be called the Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model, is proposed. The GARCH-PARK-R model, utilizing the extreme values, is a good alternative to the Realized Volatility that requires a large amount of intra-daily data, which remain relatively costly and are not readily available. Estimates of the GARCH-PARK-R model are derived using Quasi-Maximum Likelihood Estimation (QMLE). The results suggest that the GARCH-PARK-R model is a good middle ground between intra-daily models, such as the Realized Volatility and inter-daily models, such as the ARCH class. The forecasting performance of the models is evaluated using the daily Philippine Peso-U.S. Dollar exchange rate from January 1997 to December 2003.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

Gold price volatility: A forecasting approach using the Artificial Neural Network-GARCH model

One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and mode...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility

This paper studies volatility forecasting in the financial stock market. In general, stock market volatility is time-varying and exhibits clustering properties. Thus, this paper presents the results of using a fuzzy system method to analyze clustering in generalized autoregressive conditional heteroskedasticity (GARCH) models. It also uses the adaptive method of recursive least-squares (RLS) to...

متن کامل

Modeling the conditional distribution of interest rates as a regime - switching process

This paper develops a generalized regime-switching (GRS) model of the short-term interest rate. The model allows the short rate to exhibit both mean reversion and conditional heteroskedasticity and nests the popular generalized autoregressive conditional heteroskedasticity (GARCH) and square root process specifications. The conditional variance process accommodates volatility clustering and dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004